Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Clin Infect Dis ; 2023 Mar 31.
Article in English | MEDLINE | ID: covidwho-2328027

ABSTRACT

BACKGROUND: Antibiotics are frequently prescribed unnecessarily in outpatients with COVID-19. We sought to evaluate factors associated with antibiotic prescribing in those with SARS-CoV-2 infection. METHODS: We performed a population-wide cohort study of outpatients 66 years or older with PCR-confirmed SARS-CoV-2 from January 1st 2020 to December 31st 2021 in Ontario, Canada. We determined rates of antibiotic prescribing within 1-week before (pre-diagnosis) and 1-week after (post-diagnosis) reporting of the positive SARS-CoV-2 result, compared to a self-controlled period (baseline). We evaluated predictors of prescribing, including a primary series COVID-19 vaccination, in univariate and multivariable analyses. RESULTS: We identified 13,529 eligible nursing home residents and 50,885 eligible community dwelling adults with SARS-CoV-2 infection. Of the nursing home and community residents, 3,020 (22%) and 6,372 (13%) received at least one antibiotic prescription within 1 week of a SARS-CoV-2 positive result, respectively. Antibiotic prescribing in nursing home and community residents occurred at 15.0 and 10.5 prescriptions per 1000 person-days pre-diagnosis and 20.9 and 9.8 per 1000 person-days post-diagnosis, higher than the baseline rates of 4.3 and 2.5 prescriptions per 1000 person-days. COVID-19 vaccination was associated with reduced prescribing in nursing home and community residents, with adjusted post-diagnosis IRRs of 0.7 (95%CI 0.4-1) and 0.3 (95%CI 0.3-0.4) respectively. CONCLUSIONS: Antibiotic prescribing was high and with little or no decline following SARS-CoV-2 diagnosis, though was reduced in COVID-19 vaccinated individuals, highlighting the importance of vaccination and antibiotic stewardship in older adults with COVID-19.

2.
Open Forum Infect Dis ; 9(7): ofac205, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1922312

ABSTRACT

Background: Nonpharmaceutical interventions such as physical distancing and mandatory masking were adopted in many jurisdictions during the coronavirus disease 2019 pandemic to decrease spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We determined the effects of these interventions on incidence of healthcare utilization for other infectious diseases. Methods: Using a healthcare administrative dataset, we employed an interrupted time series analysis to measure changes in healthcare visits for various infectious diseases across the province of Ontario, Canada, from January 2017 to December 2020. We used a hierarchical clustering algorithm to group diagnoses that demonstrated similar patterns of change through the pandemic months. Results: We found that visits for infectious diseases commonly caused by communicable respiratory pathogens (eg, acute bronchitis, acute sinusitis) formed distinct clusters from diagnoses that often originate from pathogens derived from the patient's own flora (eg, urinary tract infection, cellulitis). Moreover, infectious diagnoses commonly arising from communicable respiratory pathogens (hierarchical cluster 1: highly impacted diagnoses) were significantly decreased, with a rate ratio (RR) of 0.35 (95% confidence interval [CI], .30-.40; P < .001) after the introduction of public health interventions in April-December 2020, whereas infections typically arising from the patient's own flora (hierarchical cluster 3: minimally impacted diagnoses) did not demonstrate a sustained change in incidence (RR, 0.95 [95% CI, .90-1.01]; P = .085). Conclusions: Public health measures to curtail the incidence of SARS-CoV-2 were widely effective against other communicable respiratory infectious diseases with similar modes of transmission but had little effect on infectious diseases not strongly dependent on person-to-person transmission.

3.
Fam Med Prim Care Open Access ; 4(2)2020.
Article in English | MEDLINE | ID: covidwho-1776804

ABSTRACT

This article describes the process of using principles from community-based participatory action research to involve low-income, single, African American mothers on the south side of Chicago in genomic research, including as citizen scientists. The South Chicago Black Mothers' Resiliency Project used a mixed methods design to investigate how the stress of living in neighborhoods with high levels of violence affects mothers' mental and physical health. This article seeks to serve as a model for physicians and scholars interested in successfully involving low-income African American mothers in genomic research, and other health-related activities in ways that are culturally sensitive and transformative. The lives of Black mothers who struggle under interlocking systems of oppression that are often hidden from view of most Americans are at the center of this article. Therefore, we provide extensive information about the procedures used to collect the various types of data, the rationale for our procedures, the setting, the responses of mothers in our sample and methodological challenges. This study also has implications for the current COVID-19 pandemic and the need to train a corps of citizen scientists in health and wellness to avoid future extreme loss of life such as the 106,195 lives lost in the United States as of June 1, 2020.

4.
Appl Environ Microbiol ; 88(5): e0174021, 2022 03 08.
Article in English | MEDLINE | ID: covidwho-1604444

ABSTRACT

Throughout the coronavirus disease 2019 (COVID-19) pandemic, wastewater surveillance has been used to monitor trends in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) prevalence in the community. A major challenge in establishing wastewater surveillance programs, especially in remote areas, is the need for a well-equipped laboratory for sample analysis. Currently, no options exist for rapid, sensitive, mobile, and easy-to-use wastewater tests for SARS-CoV-2. The performance of the GeneXpert system, which offers cartridge-based, rapid molecular clinical testing for SARS-CoV-2 in a portable platform, was evaluated using wastewater as the input. The GeneXpert demonstrated a SARS-CoV-2 limit of detection in wastewater below 32 copies/mL with a sample processing time of less than an hour. Using wastewater samples collected from multiple sites across Canada during February and March 2021, a high overall agreement (97.8%) was observed between the GeneXpert assay and laboratory-developed tests regarding the presence or absence of SARS-CoV-2. Additionally, with the use of centrifugal filters, the detection threshold of the GeneXpert system was improved to <10 copies/mL in wastewater. Finally, to support on-site wastewater surveillance, GeneXpert testing was implemented in Yellowknife, a remote community in Northern Canada, where its use successfully alerted public health authorities to undetected transmission of COVID-19. The identification of SARS-CoV-2 in wastewater triggered clinical testing of recent travelers and identification of new COVID-19 cases/clusters. Taken together, these results suggest that GeneXpert is a viable option for surveillance of SARS-CoV-2 in wastewater in locations that do not have access to established testing laboratories. IMPORTANCE Wastewater-based surveillance is a powerful tool that provides an unbiased measure of COVID-19 prevalence in a community. This work describes a sensitive wastewater rapid test for SARS-CoV-2 based on a widely distributed technology, the GeneXpert. The advantages of an easy-to-use wastewater test for SARS-CoV-2 are clear: it supports surveillance in remote communities, improves access to testing, and provides faster results allowing for an immediate public health response. The application of wastewater rapid testing in a remote community facilitated the detection of a COVID-19 cluster and triggered public health action, clearly demonstrating the utility of this technology. Wastewater surveillance will become increasingly important in the postvaccination pandemic landscape as individuals with asymptomatic/mild infections continue transmitting SARS-CoV-2 but are unlikely to be tested.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19/epidemiology , Humans , Pandemics , Wastewater , Wastewater-Based Epidemiological Monitoring
5.
Open Forum Infect Dis ; 8(11): ofab533, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1528174

ABSTRACT

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic has potentially impacted outpatient antibiotic prescribing. Investigating this impact may identify stewardship opportunities in the ongoing COVID-19 period and beyond. METHODS: We conducted an interrupted time series analysis on outpatient antibiotic prescriptions and antibiotic prescriptions/patient visits in Ontario, Canada, between January 2017 and December 2020 to evaluate the impact of the COVID-19 pandemic on population-level antibiotic prescribing by prescriber specialty, patient demographics, and conditions. RESULTS: In the evaluated COVID-19 period (March-December 2020), there was a 31.2% (95% CI, 27.0% to 35.1%) relative reduction in total antibiotic prescriptions. Total outpatient antibiotic prescriptions decreased during the COVID-19 period by 37.1% (95% CI, 32.5% to 41.3%) among family physicians, 30.7% (95% CI, 25.8% to 35.2%) among subspecialist physicians, 12.1% (95% CI, 4.4% to 19.2%) among dentists, and 25.7% (95% CI, 21.4% to 29.8%) among other prescribers. Antibiotics indicated for respiratory infections decreased by 43.7% (95% CI, 38.4% to 48.6%). Total patient visits and visits for respiratory infections decreased by 10.7% (95% CI, 5.4% to 15.6%) and 49.9% (95% CI, 43.1% to 55.9%). Total antibiotic prescriptions/1000 visits decreased by 27.5% (95% CI, 21.5% to 33.0%), while antibiotics indicated for respiratory infections/1000 visits with respiratory infections only decreased by 6.8% (95% CI, 2.7% to 10.8%). CONCLUSIONS: The reduction in outpatient antibiotic prescribing during the COVID-19 pandemic was driven by less antibiotic prescribing for respiratory indications and largely explained by decreased visits for respiratory infections.

6.
Clin Microbiol Infect ; 28(3): 426-432, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1487661

ABSTRACT

OBJECTIVES: The COVID-19 pandemic has had an effect on the incidence of infectious diseases and medical care. This study aimed to describe the impact of the COVID-19 pandemic on community-level antibiotic use. METHODS: Using national antibiotic dispensing data from IQVIA's CompuScript database, this ecological study investigated antibiotic dispensing through community retail pharmacies in Canada from November 2014 to October 2020. Analyses were stratified by age, sex, prescription origin and approximate indication. RESULTS: Adjusting for seasonality, the national rate of antibiotic dispensing in Canada decreased by 26.5% (50.4 to 37.0 average prescriptions per 1000 inhabitants) during the first 8 months of the Canadian COVID-19 period (March to October 2020), compared with the pre-COVID-19 period. Prescribing rates in children ≤18 years decreased from 43.7 to 12.2 prescriptions per 1000 inhabitants in males (-72%) and from 46.8 to 14.9 prescriptions per 1000 inhabitants in females (-68%) in April 2020. Rates in adults ≥65 decreased from 74.9 to 48.8 prescriptions per 1000 inhabitants in males (-35%) and from 91.7 to 61.3 prescriptions per 1000 inhabitants in females (-33%) in May 2020. Antibiotic prescriptions from family physicians experienced a greater decrease than from surgeons and infectious disease physicians. Prescribing rates for antibiotics for respiratory indications decreased by 56% in May 2020 (29.2 to 12.8 prescriptions per 1000 inhabitants), compared with prescribing rates for urinary tract infections (9.4 to 7.8 prescriptions per 1000 inhabitants; -17%) and skin and soft tissue infections (6.4 to 5.2 prescriptions per 1000 inhabitants; -19%). DISCUSSION: The first 8 months of the COVID-19 pandemic reduced community antibiotic dispensing by 26.5% in Canada, compared with the marginal decrease of 3% in antibiotic consumption between 2015 and 2019. Further research is needed to understand the implications and long-term effects of the observed reductions on antibiotic use on antibiotic resistance in Canada.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Adult , Anti-Bacterial Agents/therapeutic use , COVID-19/epidemiology , Canada/epidemiology , Child , Drug Prescriptions , Female , Humans , Male , Pandemics , Practice Patterns, Physicians' , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL